Sulfur-controlled 5-exo selective aryl radical cyclisation of N -vinylic 2-bromobenzamides: synthesis of lennoxamine and chilenine

H iroyuki Ishibashi,*† H irotaka K awanami and M asazumi Ikeda*

K yoto P harmaceutical U niversity, M isasagi, Yamashina, K yoto 607, J apan
$\mathrm{Bu}_{3} \mathrm{SnH}$-mediated aryl radical cyclisation of N -[2,2-bis(phenylsulfanyl)ethenyl]-2-bromobenzamides
12a-d and 16 takes place in a 5-exo manner to give exclusively the isoindolones 15a-d and 17, respectively.
The isoindolone 17 is converted into lennoxamine and a key intermediate 20 for the synthesis of chilenine.

Introduction

$\mathrm{Bu}_{3} \mathrm{SnH}$-mediated aryl radical cyclisations are now widely used in organic synthesis for the construction of fused aromatic compounds. With only a few exceptions, ${ }^{1}$ a 5 -exo-trig cyclisation is generally preferred over a 6 -endo-trig ring closure in those systems having an alkenic bond at the 5 -position relative to the aryl radical centre. ${ }^{2}$ The corresponding N -vinylic benzamide systems $\mathbf{1}$, however, have been reported to cyclise in a 6 -endo-trig manner exclusively or predominantly, leading to the isoquinolones $5 .{ }^{3}$ The exact reason why the 6 -endo cyclisation predominates in the systems $\mathbf{1}$ is not clear at the present time, but one possible explanation involves an assumption that the initially formed aryl radicals cyclise in the usual 5-exo manner to give radicals 2 , which then undergo a neophyl rearrangement ${ }^{4}$ through the intermediates 3 to give more stable radicals 4 (Scheme 1). If this hypothesis is correct, the stabilis-

1

2

3

5

Scheme 1 Reagents: i, $\mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{A} I \mathrm{BN}$

[^0] U niversity, Takara-machi, K anazawa 920, Japan.
ation of the radicals $\mathbf{2}$ might prevent further rearrangement to give the 5 -exo cyclisation products.

Previously, we demonstrated that, when two phenylsulfanyl groups were introduced at the terminus of the vinyl group of N vinylic α-halogenoacetamides such as 6 , the 4 -exo cyclisation becomes favoured over the 5 -endo cyclisation to give exclusively the β-lactams 8 (Scheme 2). ${ }^{5}$ This is considered to be a result of stabilisation of the intermediate radicals 7 by means of two phenylsulfanyl groups. We have now examined whether or not the radical cyclisation of bromides $\mathbf{1}$ can be shifted from a endo mode to an exo mode by using this methodology. Herein, we report the sulfur-directed 5 -exo selective radical cyclisation onto enamides which provides new entries to the isoindolones and the application of this method to the synthesis of lennoxamine $\mathbf{2 1}$ and chilenine $22 .{ }^{6}$

Scheme 2 Reagents: i, $\mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{AIBN}$

Results and discussion

We began our investigations by examining the cyclisation of several model compounds 12a-d, which were readily prepared in $59-92 \%$ overall yield by condensation of appropriate alkylamines 9a-d with bis(phenylsulfanyl)acetaldehyde 10, ${ }^{\text {5a }}$ followed by N -acylation of the resulting enamines 11a-d with o-bromobenzoyl chloride.

The enamide 12a, when treated with 1.1 mol equiv. of $\mathrm{Bu}_{3} \mathrm{SnH}$ and a small amount of $1,1^{\prime}$-azobis(cyclohexanecarbonitrile) (ACN) in boiling toluene, gave the cyclised products $14 \mathrm{a}(30 \%)$ and $15 \mathrm{a}(8 \%)$, in addition to the unchanged starting material 12a (28\% recovery). Since a partial desulfurisation of the cyclisation product 14a to the mono(phenylsulfanyl) compound 15a was unavoidable possibly because of slow generation of the aryl radical from 12a, the enamide 12a
was treated with 3.3 mol equiv. of $\mathrm{Bu}_{3} \mathrm{SnH}$ in the presence of ACN to give compound $\mathbf{1 5 a}$ as the sole product in 64% yield. The structure of compound 15a was determined on the basis of spectroscopic evidence; a carbonyl absorption in its IR spectrum appeared at $1700 \mathrm{~cm}^{-1}$ (a five-membered lactam) and the ${ }^{1} \mathrm{H}$ NMR spectrum revealed an $A M X$ pattern consisting of three doublets at $\delta 3.19$ (J 13.8 and 6.6 Hz), 3.54 (J 13.8 and 3.3 Hz), and 4.56 (6.6 and 3.3 Hz), indicating the presence of a PhSCH CH_{2} moiety.

Similar treatment of compounds $\mathbf{1 2 b}$-d with $\mathrm{Bu}_{3} \mathrm{SnH}$ gave the corresponding isoindolones $\mathbf{1 5 b}$-d in 49-59\% yield.

Thus we found that the $\mathrm{Bu}_{3} \mathrm{SnH}$-induced aryl radical cyclisation of the enamides $\mathbf{1 2}$ having two phenylsulfanyl groups at the terminus of the N -vinylic bond provided exclusively the isoindolones 14. Because aryl radicals are very reactive species with very early transition states their products are not generally determined by the product radical stability. Thus, a thermodynamic argument ${ }^{5}$ used to explain the predominance of 4-exo

Scheme 3 Reagents and conditions: $\mathrm{i},(\mathrm{PhS})_{2} \mathrm{CHCHO}(\mathbf{1 0}), \mathrm{M} \mathrm{gSO}_{4}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temp.; ii, o-bromobenzoyl chloride, PhNEt_{2}, benzene, reflux; iii, $\mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{ACN}$, toluene, reflux
cyclisation in the N -vinylic enamides $\mathbf{6}$ seems to be not directly applied to the present case. One possible rationalisation for the observed behaviour of the enamides $\mathbf{1 2}$ would involve the postulated neophyl rearrangement: the presence of two phenylsulfanyl groups would make the radical $\mathbf{1 3}$ much more stable and less prone to undergo the rearrangement, hence allowing the formation of isoindolone rather than the neophyl rearrangement. A n alternative explanation could involve steric factors: the presence of two large phenylsulfanyl groups kinetically favours attack at the proximate end of the double bond to give the isoindolones 14 (Scheme 3).

Encouraged by the success of the 5 -exo cyclisation of the enamides 12, we then applied this method to the synthesis of isoindolobenzazepine alkaloids lennoxamine 21^{7} and chilenine $22,{ }^{8}$ isolated as racemates from the Chilean barberries Berberis darwinii $\mathrm{Hook}^{7 b}$ and B erberis empetrifolia Lam, ${ }^{9}$ respectively.

Compound 16, prepared from 2-(3,4-methylenedioxyphenyl)ethylamine, the aldehyde 10 , and 6-bromo-2,3dimethoxybenzoyl chloride ${ }^{10}$ in 90% yield, was treated with $B u_{3} \mathrm{SnH}$ (3.3 mol equiv.)/ACN in boiling toluene to give the

18
19a; β-SPh

20

Scheme 4 Reagents and conditions: $\mathrm{i},(\mathrm{PhS})_{2} \mathrm{CHCHO}(10), \mathrm{M} \mathrm{gSO}_{4}$, $\mathrm{Et}_{2} \mathrm{O}$, room temp.; ii, 6-bromo-2,3-dimethoxybenzoyl chloride, PhNEt_{2}, toluene, reflux (90%); iii, $\mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{ACN}$, toluene, reflux; iv, M CPBA, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}$ (quant.); v, TFAA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ and then room temp. (80\%); vi, M CPBA , $\mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}$; vii, toluene, reflux; viii, $\mathrm{Bu}_{3} \mathrm{SnH}$, AIBN, toluene, reflux (94%); ix, TFA A, toluene, $0^{\circ} \mathrm{C}$ and then reflux, 10 h (69\%)
isoindolone $\mathbf{1 7}$ in 66% yield. Oxidation of compound $\mathbf{1 7}$ with m-chloroperbenzoic acid MCPBA gave the sulfoxide 18 (quant.), which was then treated with trifluoroacetic anhydride (TFAA) in dichloromethane at room temperature for 1.5-2 days to give the benzazepine 19 in 80% yield as a mixture of two diastereoisomers (Scheme 4). This mixture was separated by silica gel column chromatography to give isomers 19a, mp 226$227^{\circ} \mathrm{C}$, and 19b, mp $202-203^{\circ} \mathrm{C}$. The formation of benzazepines 19a,b from sulfoxide 18 can be explained in terms of the Pummerer rearrangement of compound 18 with TFAA followed by an intramolecular electrophilic aromatic substitution of the resulting α-trifluoroacetoxy sulfide ${ }^{11}$ The stereochemistry of benzazepines $19 \mathrm{a}, \mathrm{b}$ was determined based on the
thermal behaviour of the corresponding sulfoxides. Thus, heating of the sulfoxide derived from compound 19a in boiling toluene gave the unsaturated lactam 20 in 57% yield as a result of a syn-elimination of sulfenic acid, while similar treatment of the sulfoxide derived from compound 19b recovered unchanged under the same conditions. Desulfurisation of a mixture of isomers 19a and 19b with $\mathrm{Bu}_{3} \mathrm{SnH}$ and azobisisobutyronitrile (AIBN) in boiling toluene gave lennoxamine 21 in 94% yield, whose mp and ${ }^{1} \mathrm{H}$ NMR spectral data were in accord with the reported values. ${ }^{7 d}$

On the other hand, heating of the sulfoxide 18 with TFAA in toluene gave compound 20 in 69% yield. Since compound 20 has already been converted into chilenine 22 in a one-pot procedure (dimethyldioxirane and then aq. NaHCO_{3}) by Fang and Danishefsky, ${ }^{8}$ the whole sequence of reactions constitutes, in a formal sense, a total synthesis of chilenine.

Since relatively high asymmetric inductions were observed with the 4 -exo-trig ${ }^{5}$ and 5 -endo-trig radical cyclisations ${ }^{12}$ of N-vinylic α-halogenoacetamides bearing a chiral auxiliary group on the nitrogen atom, it was of interest to investigate the diastereoselectivity of the 5 -exo aryl radical cyclisation Therefore, we prepared the enamide 12e bearing an (S)-1phenylethyl group on the nitrogen atom as a chiral auxiliary group. Treatment of compound 12e with $\mathrm{Bu}_{3} \mathrm{SnH} / \mathrm{ACN}$ in boiling toluene gave the isoindolone 15 e as a twodiastereomer mixture in 59\% combined yield (Scheme 5). The ${ }^{1} \mathrm{H} N \mathrm{M}$ R spectrum of this mixture showed the ratio of the two diastereo isomers to be $\sim 2: 1$, though the exact stereochemistry of the major diastereoisomer of compound $\mathbf{1 5 e}$ was not determined. Thus, no remarkable diastereoselectivity was observed for the cyclisation of compound 12e. In order to improve the diastereoselectivity, a synthesis of the enamide bearing an (S)-1-(1-naphthyl)ethyl group on the nitrogen atom was attempted without success.

Scheme 5 Reagents and conditions: $\mathrm{i}, \mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{ACN}$, toluene, reflux
In summary, we have found that $\mathrm{Bu}_{3} \mathrm{SnH}$-mediated aryl radical cyclisation of N -[2,2-bis(phenylsulfanyl)ethenyl]-2bromobenzamides 12a-d and $\mathbf{1 6}$ took place in a 5 -exo manner to give exclusively the isoindolones $\mathbf{1 5 a - d}$ and 17 , respectively. The isoindolone $\mathbf{1 7}$ was converted into lennoxamine 21 and a key intermediate 20 for the synthesis of chilenine 22. This work raises some mechanistic questions concerning the aryl radical cyclisation of the enamides, and we hope to pursue these problems in a continuation of this study.

Experimental

M ps were measured on a Yanaco M P-J 3 micro melting point apparatus and uncorrected. IR spectra were recorded on a JASCO-IR-A-100 spectrophotometer. ${ }^{1} \mathrm{H}$ NMR (60 and 300 MHz) and ${ }^{13} \mathrm{C} N \mathrm{M}$ R (75.4 MHz) spectra were measured on a JEOL-JNM-PMX 60 or a Varian XL-300 spectrometer for solutions in CDCl_{3}. δ-Values quoted are relative to tetramethylsilane, and J-values are given in Hz . Exact mass determinations (EI and FA B mass spectra) were obtained on a JEOL-SX 102A instrument. Column chromatography was performed on Silica gel $60 \mathrm{PF}_{254}$ (N acalai Tesque) under pressure

G eneral procedure for the preparation of N -[2,2-bis(phenyl-sulfanyl)ethenyl]-2-bromobenzamides 12a-e

A ppropriate amine 9 (5.5 mmol) and magnesium sulfate (10 g) were added to a solution of bis(phenylsulfanyl)acetaldehyde 10
($1.44 \mathrm{~g}, 5.5 \mathrm{mmol}$) in dichloromethane ($70 \mathrm{~cm}^{3}$) and the mixture was stirred at room temperature for 2 h . M agnesium sulfate was removed by filtration, the filtrate was concentrated in vacuo, and the resulting crude enamine was dissolved in benzene (70 cm^{3}). N, N-D iethylaniline ($1.64 \mathrm{~g}, 11 \mathrm{mmol}$) and then o-bromobenzoyl chloride ($2.14 \mathrm{~g}, 11 \mathrm{mmol}$) were successively added to the refluxing solution and the whole was refluxed for 1 h . The reaction mixture was washed successively with $1 \mathrm{~mol} \mathrm{dm}^{-3}$ HCl , saturated aq. NaHCO_{3}, and brine, dried $\left(\mathrm{M} \mathrm{gSO}_{4}\right)$ and concentrated. The residue was chromatographed on silica gel [hexane-A cOEt (2:1)]. The following compounds were thus obtained.
N -(3,4-D imethoxybenzyl)-N-[2,2-bis(phenylsulfanyl)ethenyl]-2-bromobenzamide 12a. Y ield 92%, crystals $\mathrm{mp} 88-90^{\circ} \mathrm{C}$ (from hexane-AcOEt) (Found: C, 60.5; H, 4.4; N, 2.6. $\mathrm{C}_{30} \mathrm{H}_{26}$ $\mathrm{BrNO} \mathrm{S}_{3} \mathrm{~S}_{2}$ requires C, $60.8 ; \mathrm{H}, 4.4 ; \mathrm{N}, 2.4 \%$); $v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1}$ $1650 ; \delta_{\mathrm{H}}(60 \mathrm{M} \mathrm{Hz}) 3.80(3 \mathrm{H}, \mathrm{s}, ~ O M ~ e), 3.85(3 \mathrm{H}, \mathrm{s}, \mathrm{OM}$ e), 4.98 ($2 \mathrm{H}, \mathrm{brs}, \mathrm{NCH}_{2} \mathrm{Ar}$) and 6.4-7.7 ($18 \mathrm{H}, \mathrm{m}$, olefinic H and ArH).
N-M ethyl-N-[2,2-bis(phenyIsulfanyl)ethenyl]-2-bromobenz-
amide 12b. Y ield 59 \%, an oil (Found: C, 57.4; H, 3.7; N, 2.95. $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{BrNOS}_{2}$ requires C, $57.9 ; \mathrm{H}, 4.0 ; \mathrm{N}, 3.1 \%$); $v_{\text {max }}\left(\mathrm{CCl}_{4}\right) /$ $\mathrm{cm}^{-1} 1665 ; \delta_{\mathrm{H}}(60 \mathrm{M} \mathrm{Hz}) 3.35(3 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NMe})$ and 6.7-7.7 (15 H, m, olefinic H and ArH).

N-B enzyl-N-[2,2-bis(phenylsulfanyl)ethenylf2-bromo-

benzamide 12c. Y ield 74%, crystals $\mathrm{mp} 64-65^{\circ} \mathrm{C}$ (from hexaneAcOEt) (Found: $\mathrm{C}, 63.3 ; \mathrm{H}, 4.4 ; \mathrm{N}, 2.3 . \mathrm{C}_{28} \mathrm{H}_{22} \mathrm{BrN} \mathrm{OS}_{2}$ requires C, $63.15 ; \mathrm{H}, 4.2 ; \mathrm{N}, 2.6 \%) ; v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1660 ; \delta_{\mathrm{H}}(60 \mathrm{M} \mathrm{Hz})$ $5.05\left(2 \mathrm{H}\right.$, br s, $\left.\mathrm{NCH}_{2} \mathrm{Ar}\right)$ and $6.4-7.65(20 \mathrm{H}, \mathrm{m}$, olefinic H and ArH).

N -[2-(3,4-D imethoxyphenyl)ethyl] N -[2,2-bis(phenyl-sulfanyl)ethenyl]-2-bromobenzamide 12d. Yield 75\%, crystals $\mathrm{mp} 85-86^{\circ} \mathrm{C}$ (from hexane-A cOEt) (Found: C, 61.3; H , 4.6; N, 2.25. $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{BrNO}_{3} \mathrm{~S}_{2}$ requires $\mathrm{C}, 61.4 ; \mathrm{H}, 4.65 ; \mathrm{N}, 2.3 \%$); $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1655 ; \delta_{\mathrm{H}}(60 \mathrm{M} \mathrm{Hz}) 2.8-3.2(2 \mathrm{H}, \mathrm{m}), 3.77(3 \mathrm{H}$, s, OM e), 3.82 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OM}$ e), 3.9-4.3 ($2 \mathrm{H}, \mathrm{m}$) and 6.5-7.7 (18 H , m , olefinic H and ArH).
$\mathbf{N}-[(\mathrm{S})-1-\mathrm{P}$ henylethyl]-N-[2,2-bis(phenylsulfanyl)ethyl]-2-
bromobenzamide 12 e. Yield 57%, crystals $\mathrm{mp} 123^{\circ} \mathrm{C}$ (from hexane-AcOEt) (Found: C, 63.4; H, 4.3; N, 2.5. $\mathrm{C}_{29} \mathrm{H}_{24}$ BrNOS_{2} requires $\mathrm{C}, 63.7 ; \mathrm{H}, 4.4 ; \mathrm{N}, 2.6 \%$); $v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1}$ $1650 ; \delta_{\mathrm{H}}(60 \mathrm{M} \mathrm{Hz}) 1.73\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 8, \mathrm{CHCH}_{3}\right), 6.09(1 \mathrm{H}, \mathrm{q}, \mathrm{J} 8.0$, $\left.\mathrm{CHCH}_{3}\right)$ and 6.3-7.7 (20 H , m, olefinic H and ArH).

Radical cyclisation of compound 12a

General procedure. To a stirred and boiling solution of compound 12a ($579 \mathrm{mg}, 0.97 \mathrm{mmol}$) in toluene ($100 \mathrm{~cm}^{3}$) was added a solution of $\mathrm{Bu}_{3} \mathrm{SnH}(960 \mathrm{mg}, 3.3 \mathrm{mmol})$ and $\mathrm{ACN}(73 \mathrm{mg}, 0.3$ mmol) in toluene ($50 \mathrm{~cm}^{3}$) via a syringe during 3 h , and the mixture was refluxed for 5 h . A fter removal of the solvent, diethyl ether ($50 \mathrm{~cm}^{3}$) and 8% aq. K F ($50 \mathrm{~cm}^{3}$) were added to the residue, and the whole was vigorously stirred at room temperature for 30 min . The organic layer was separated, dried $\left(\mathrm{M} \mathrm{SSO}_{4}\right)$, and concentrated. The residue was chromatographed on silica gel [hexane-A cOEt ($2: 1$)] to give 2,3-dihydro-N - $(3,4-$ dimethoxybenzyl)-3-[(phenylsulfanyl)methyl]-1H -isoindol-1-one 15a ($251 \mathrm{mg}, 64 \%$) as an oil (Found: C, 71.1; H, 5.9; N, 3.75. $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S}$ requires C, 71.1; H, 5.7; N, 3.45\%); $v_{\text {max }}\left(\mathrm{CCl}_{4}\right) /$ $\mathrm{cm}^{-1} 1700 ; \delta_{\mathrm{H}}(300 \mathrm{NHz}) 3.19(1 \mathrm{H}, \mathrm{dd}$, J 13.8 and 6.6 , one of $\left.\mathrm{CH}_{2} \mathrm{SPh}\right), 3.54\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.8\right.$ and 3.3, one of $\mathrm{CH}_{2} \mathrm{SPh}$), 3.79 (3 $\mathrm{H}, \mathrm{s}, \mathrm{OM}$ e), 3.85 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OM} \mathrm{e}$), 4.01 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.0$, one of $\mathrm{CH}_{2} \mathrm{Ar}$), $4.56(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 6.6$ and $3.3,3-\mathrm{H}), 5.23(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.0$, one of $\left.\mathrm{CH}_{2} \mathrm{Ar}\right), 6.72-6.81(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.23(5 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$, 7.46-7.53 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and 7.89-7.92 ($1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

When compound 12a ($592 \mathrm{mg}, 1.0 \mathrm{mmol}$) was treated with $\mathrm{Bu}_{3} \mathrm{SnH}(320 \mathrm{mg}, 1.1 \mathrm{mmol})$ and ACN ($24 \mathrm{mg}, 0.1 \mathrm{mmol}$) in toluene ($150 \mathrm{~cm}^{3}$), 2.3-dihydro-N -(3,4-dimethoxybenzyl)-3-[bis(phenylsulfanyl)methyl]-1H -isoindol-1-one 14a ($73 \mathrm{mg}, 30 \%$), compound 15a ($18 \mathrm{mg}, 8 \%$), and the unchanged starting material 12a ($76 \mathrm{mg}, \mathbf{2 8 \%}$ recovery) were obtained. Compound 14a had mp 89-91 ${ }^{\circ} \mathrm{C}$ (from hexane-A cOEt) (Found: C, 70.2;
$\mathrm{H}, 5.3 ; \mathrm{N}, 2.7 . \mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~N} \mathrm{O}_{3} \mathrm{~S}_{2}$ requires $\mathrm{C}, 70.15 ; \mathrm{H}, 5.3 ; \mathrm{N}, 2.7 \%$); $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1705 ; \delta_{\mathrm{H}}(300 \mathrm{M} \mathrm{Hz}) 3.72(3 \mathrm{H}, \mathrm{s}, \mathrm{OM} \mathrm{e}), 3.84$ (3 $\mathrm{H}, \mathrm{s}, \mathrm{OM}$ e), $4.10\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.3\right.$, one of $\mathrm{CH}_{2} \mathrm{Ar}$), $4.81[2 \mathrm{H}, \mathrm{s}$, $\mathrm{CH} \mathrm{CH}(\mathrm{SPh})_{2}$, $5.02\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.3\right.$, one of $\left.\mathrm{CH}_{2} \mathrm{Ar}\right), 6.52(1 \mathrm{H}$ d, J 8.3, ArH), 6.62 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.3, \mathrm{ArH}$), $6.68(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}$), 7.26 ($10 \mathrm{H}, \mathrm{s}, \mathrm{ArH}$), 7.53-7.61 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.93-7.97 (1 H $\mathrm{m}, \mathrm{ArH})$ and 8.03-8.07 ($1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

Radical cyclisation of compound 12b

Following the general procedure, compound 12b ($525 \mathrm{mg}, 1.15$ mmol) was treated with $\mathrm{Bu}_{3} \mathrm{SnH}(1.10 \mathrm{~g}, 3.79 \mathrm{mmol})$ and ACN ($84 \mathrm{mg}, 0.34 \mathrm{mmol}$) in toluene ($170 \mathrm{~cm}^{3}$) and the crude material was chromatographed on silica gel [hexane-AcOEt (2:1)] to give 2,3-dihydro-N -methyl-3-[(phenylsulfanyl)methyl] 1H -isoindol-1-one 15b ($153 \mathrm{mg}, 50 \%$) as an oil (Found: C, 71.0; $\mathrm{H}, 5.8 ; \mathrm{N}, 5.7 . \mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}$ OS requires C, $71.35 ; \mathrm{H}, 5.6 ; \mathrm{N}, 5.2 \%$); $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1695 ; \delta_{\mathrm{H}}(300 \mathrm{M} \mathrm{Hz}) 3.02(3 \mathrm{H}, \mathrm{s}, \mathrm{N} \mathrm{M} \mathrm{e}), 3.31$ (1 $\mathrm{H}, \mathrm{dd}, \mathrm{J} 13.7$ and 6.0 , one of $\left.\mathrm{CH}_{2} \mathrm{SPh}\right), 3.55(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.7$ and 3.5, one of $\left.\mathrm{CH}_{2} \mathrm{SPh}\right), 4.60(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 6.0$ and $3.5,3-\mathrm{H}), 7.20-$ $7.53(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.82-7.85(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$

Radical cyclisation of compound 12c

Following the general procedure, compound 12c ($416 \mathrm{mg}, 0.78$ mmol) was treated with $\mathrm{Bu}_{3} \mathrm{SnH}(768 \mathrm{mg}, 2.64 \mathrm{mmol})$ and ACN ($58 \mathrm{mg}, 0.24 \mathrm{mmol}$) in toluene ($120 \mathrm{~cm}^{3}$) and the crude material was chromatographed on silica gel [hexane-AcOEt (5:1)] to give 2,3-dihydro-N -benzyl-3-[(phenylsulfanyl)methyl]-1H -iso-indol-1-one 15c ($159 \mathrm{mg}, 59 \%$) as an oil (Found: C, 76.5; H, 5.7; $\mathrm{N}, 4.0 . \mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NOS}$ requires $\mathrm{C}, 76.5 ; \mathrm{H}, 5.5 ; \mathrm{N}, 4.05 \%$) $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1695 ; \delta_{\mathrm{H}}(300 \mathrm{M} \mathrm{Hz}) 3.19(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.8$ and 6.6 , one of $\left.\mathrm{CH}_{2} \mathrm{SPh}\right), 3.53(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.8$ and 3.5 , one of $\mathrm{CH}_{2} \mathrm{SPh}$), 4.03 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.0$, one of $\mathrm{CH}_{2} \mathrm{Ph}$), 4.54 (1 H , dd, J 6.6 and $3.5,3-\mathrm{H}), 5.31\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.0\right.$, one of $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 7.18-7.30$ ($10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.45-7.53 (3 H, m, ArH) and 7.89-7.92 (1 H , m, ArH).

Radical cyclisation of compound 12d

Following the general procedure, compound 12d ($714 \mathrm{mg}, 1.17$ $\mathrm{mmol})$ was treated with $\mathrm{Bu}_{3} \mathrm{SnH}(1.13 \mathrm{~g}, 3.88 \mathrm{mmol})$ and ACN ($85 \mathrm{mg}, 0.35 \mathrm{mmol}$) in toluene ($170 \mathrm{~cm}^{3}$) and the crude material was chromatographed on silica gel [hexane-AcOEt (2:1)] to give 2,3-dihydro-N-[2-(3,4-dimethoxyphenyl)ethyl]-3[(phenylsulfanyl)methyl]-1H-isoindol-1-one 15d (229 mg, 49\%) as an oil (Found: M^{+}, 419.1561. $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NOS}$ requires M 419.1555); $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1690 ; \delta_{\mathrm{H}}(300 \mathrm{M} \mathrm{Hz}) 2.75-2.96(2 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}_{2} \mathrm{Ar}$), 3.18 (1 H , dd, J 13.8 and 6.3, one of $\mathrm{CH}_{2} \mathrm{SPh}$), 3.26 ($1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 14.4$ and 7.3 , one of NCH_{2}), $3.39(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.8$ and 3.9, one of $\mathrm{CH}_{2} \mathrm{SPh}$), $3.72(3 \mathrm{H}, \mathrm{s}, \mathrm{OM} \mathrm{e}), 3.83(3 \mathrm{H}, \mathrm{s}, \mathrm{OM} \mathrm{e})$, 4.07-4.18 ($1 \mathrm{H}, \mathrm{m}$ one of NCH_{2}), $4.40(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 6.3$ and 3.9 , $3-H), 6.64(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.8, \mathrm{ArH}$), $6.68(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.25$ and 1.8, ArH), 6.74 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.25, \mathrm{ArH}$), 7.22-7.33 ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.44-7.51 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and 7.84-7.87 ($1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

N -[2-(3,4-M ethylenedioxyphenyl)ethyl] N -[2,2-bis(phenyl-sulfanyl)ethenyl]-6-bromo-2,3-dimethoxybenzamide 16

Following the general procedure for the preparation of compounds 12, bromide 16 ($792 \mathrm{mg}, 90 \%$) was obtained by acylation of the enamine [pepared from 2-(3,4-methylenedioxyphenyl)ethylamine ($908 \mathrm{mg}, 5.5 \mathrm{mmol}$) and the aldehyde $\mathbf{1 0}$ ($1.43 \mathrm{~g}, 5.5 \mathrm{mmol}$)] with 6-bromo-2,3-dimethoxybenzoyl chloride ($1.13 \mathrm{~g}, 3.36 \mathrm{mmol}$) as an oil (Found: $\mathrm{C}, 58.6$; $\mathrm{H}, 4.3 ; \mathrm{N}, 2.2$. $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{BrNO}_{5} \mathrm{~S}_{2}$ requires $\mathrm{C}, ~ 59.1 ; \mathrm{H}, ~ 4.3 ; \mathrm{N}, 2.15 \%$); $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1670 ; \delta_{\mathrm{H}}(60 \mathrm{M} \mathrm{Hz}) 2.8-3.2(2 \mathrm{H}, \mathrm{m}), 3.93(6 \mathrm{H}$ s, OM e), 4.1-4.5 ($2 \mathrm{H}, \mathrm{m}$), $5.90(2 \mathrm{H}, \mathrm{s})$ and 6.7-7.4 ($16 \mathrm{H}, \mathrm{m}$, olefinic H and ArH)

R adical cyclisation of compound 16

Following the general procedure, bromide 16 ($309 \mathrm{mg}, 0.47$ $\mathrm{mmol})$ was treated with $\mathrm{Bu}_{3} \mathrm{SnH}(457 \mathrm{mg}, 1.57 \mathrm{mmol})$ and ACN ($34 \mathrm{mg}, 0.14 \mathrm{mmol}$) in toluene ($75 \mathrm{~cm}^{3}$) and the crude material
was chromatographed on silica gel [hexane-AcOEt (2:1)] to give 2,3-dihydro-N-[2-(3,4-methylenedioxyphenyl)ethyl]-6,7-dimethoxy-3-[(phenylsulfanyl)methyl]-1H -isoindol-1-one 17 (114 $\mathrm{mg}, 66 \%$) as an oil (Found: C, 67.45; H, 5.8; $\mathrm{N}, 3.0 . \mathrm{C}_{26} \mathrm{H}_{25^{-}}$ $\mathrm{NO}_{5} \mathrm{~S}$ requires $\left.\mathrm{C}, 67.4 ; \mathrm{H}, 5.4 ; \mathrm{N}, 3.0 \%\right) ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1}$ 1690; $\delta_{\mathrm{H}}(300 \mathrm{M} \mathrm{Hz}) 2.71-2.89\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ar}\right), 3.16(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ 13.7 and 6.0 , one of $\mathrm{CH}_{2} \mathrm{SPh}$), 3.16-3.26 ($1 \mathrm{H}, \mathrm{m}$, one of NCH_{2}), $3.36\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.7\right.$ and 3.8, one of $\mathrm{CH}_{2} \mathrm{SPh}$), 3.88 (3 $\mathrm{H}, \mathrm{s}, \mathrm{OM} \mathrm{e}$), 3.99 (1 H , ddd, J 14.6, 8.6 and 6.5, one of NCH_{2}), $4.11(3 \mathrm{H}, \mathrm{s}, \mathrm{OM}$ e), $4.40(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 6.0$ and 3.8, 3-H), $5.91(2 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.60(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.8$ and 1.8, ArH), $6.66(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 1.8, ArH), 6.69 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.8, \mathrm{ArH}$), $6.99(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.4, \mathrm{ArH}$), $7.15(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.4, \mathrm{ArH})$ and $7.22-7.34(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

2,3-D ihydro-N-[2-(3,4-methylenediox yphenyl)ethyl]6,7-dimethoxy-3-[(phenylsulfinyl)methyl]-1H -isoindol-1-one 18

To a solution of sulfide 17 ($277 \mathrm{mg}, 0.60 \mathrm{mmol}$) in dichloromethane $\left(50 \mathrm{~cm}^{3}\right)$ was added at $-20^{\circ} \mathrm{C}$ dropwise a solution of M CPBA ($123 \mathrm{mg}, 0.60 \mathrm{mmol}$) in dichloromethane ($25 \mathrm{~cm}^{3}$) during 30 min , and the mixture was stirred at the same temperature for 1 h . The reaction mixture was washed successively with saturated aq. NaHCO_{3} and brine, dried ($\mathrm{M} \mathrm{gSO}_{4}$), and concentrated. The residue was chromatographed on silica gel [hexaneA cOEt (1:2)] to give sulfoxide 18 (296 mg , quant.) as an oily mixture of two diastereoisomers [Found: $(\mathrm{M}+\mathrm{H})^{+}, 480.1472$. $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{NO}_{6} \mathrm{~S}$ requires $\left.\mathrm{m} / \mathrm{z}, 480.1480\right] ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1690$; $\delta_{\mathrm{H}}(300 \mathrm{M} \mathrm{Hz})$ (for the major diastereoisomer) 2.85-3.12 (2 H , m, CH 2 Ar), $3.01\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.1\right.$ and 6.8, one of $\mathrm{CH}_{2} \mathrm{SPh}$), 3.22 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.1$ and 3.5, one of $\mathrm{CH}_{2} \mathrm{SPh}$), $3.58-3.68(1 \mathrm{H}, \mathrm{m}$, one of NCH_{2}), 3.87 (3 H, s, OM e), 4.08 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OM}$ e), 4.19$4.29\left(1 \mathrm{H}, \mathrm{m}\right.$, one of $\left.\mathrm{NCH}_{2}\right), 4.82(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 6.8$ and $3.5,3-\mathrm{H})$, 5.91 and 5.92 (1 H each, $\mathrm{ABq}, \mathrm{J} 1.5, \mathrm{OCH}_{2} \mathrm{O}$), 6.73-6.76 (3 H , $\mathrm{m}, \mathrm{ArH}), 6.81(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.00(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.0, \mathrm{ArH})$ and $7.53-$ 7.64 ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

5,8,12b,13-Tetrahydro-9,10-dimethoxy-13-phenyIsulfanyl-6H -1,3-dioxolo[4,5-h]isoindolo[1,2-b][3]benzazepin-8-ones 19a,b

 TFFA ($130 \mathrm{mg}, 0.61 \mathrm{mmol}$) was added to a solution of sulfoxide 18 ($147 \mathrm{mg}, 0.31 \mathrm{mmol}$) in dichloromethane ($8 \mathrm{~cm}^{3}$) at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 36 h . The solvent was evaporated off and the residue was chromatographed on silica gel [hexane-A cOEt ($3: 1$)]. The first fraction gave one of the diastereoisomers, 19a ($51 \mathrm{mg}, 36 \%$), mp 226$227^{\circ} \mathrm{C}$ (from hexane-A COEt) (Found: C, 67.2; H, 4.9; N, 2.95. $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{NO}_{5} \mathrm{~S}$ requires $\mathrm{C}, 67.7$; $\mathrm{H}, 5.0 ; \mathrm{N}, 3.0 \%$); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right)^{2}$ $\mathrm{cm}^{-1} 1680 ; \delta_{\mathrm{H}}(300 \mathrm{M} \mathrm{Hz}) 2.69-2.79(1 \mathrm{H}, \mathrm{m}), 3.29-3.46(2 \mathrm{H}$, m), 3.88 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OM}$ e), $4.00(3 \mathrm{H}, \mathrm{s}, \mathrm{OM} \mathrm{e}), 4.03-4.16(1 \mathrm{H}, \mathrm{m})$, 4.37 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 4.5$), $4.83(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 4.5), 5.84$ and $5.89(1 \mathrm{H}$, each, both d, J 1.4, OCH O_{2}), $6.18(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 6.62(1 \mathrm{H}, \mathrm{s}$, ArH), 7.04 and 7.07 (1 H each, ABq, J 8.6, A rH) and 7.30-7.45 ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$). The second fraction gave another isomer, 19b ($62 \mathrm{mg}, 44 \%$), mp 202-203 ${ }^{\circ} \mathrm{C}$ (from hexane-AcOEt) (Found: M^{+}, 460.1281. $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N} \mathrm{O}_{5} \mathrm{~S}$ requires M , 461.1297); $v_{\text {max }}\left(\mathrm{CH} \mathrm{Cl}_{3}\right) /$ $\mathrm{cm}^{-1} 1680 ; \delta_{\mathrm{H}}(300 \mathrm{M} \mathrm{H} \mathrm{z}), 2.78$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.2$ and 4.7), 3.01 (1 H, t, J 12.5), 3.53-3.62 (1 H , m), 3.90 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OM}$ e), 4.16 (3 H , s, OM e), 4.43 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.8$), 4.71-4.78 ($1 \mathrm{H}, \mathrm{m}$), $4.75(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 1.8), $5.94(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH} 2 \mathrm{O}), 6.54(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 6.70(1 \mathrm{H}, \mathrm{s}$, $\mathrm{ArH})$ and $6.94-7.19(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.
Lennoxamine 21

To a solution of mixed pentacyclic diastereoisomers 19 (57 mg , 0.12 mmol) in toluene ($5 \mathrm{~cm}^{3}$) were added $\mathrm{Bu}_{3} \mathrm{SnH}$ (118 mg , 0.41 mmol) and $\mathrm{A} I B N$ ($6 \mathrm{mg}, 0.04 \mathrm{mmol}$), and the mixture was refluxed for 2 h . A fter removal of the solvent, diethyl ether (10 cm^{3}) and 8% aq. K $\mathrm{F}\left(10 \mathrm{~cm}^{3}\right)$ wereadded to the residue, and the whole was vigorously stirred at room temperature for 30 min . The organic layer was separated, dried (MgSO_{4}), and concentrated. The residue was chromatographed on silica gel [hexaneA cOEt (2:1)] to give title compound 21 ($41 \mathrm{mg}, 94 \%$), mp 229$230^{\circ} \mathrm{C}$ (from methanol) (lit., ${ }^{7 \mathrm{a}, \mathrm{c}} 228-229^{\circ} \mathrm{C}$; lit.,,$^{\text {bb, }} 225^{\circ} \mathrm{C}$);
$v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1675 ; \delta_{\mathrm{H}}(300 \mathrm{M} \mathrm{Hz}), 2.79-2.98(3 \mathrm{H}, \mathrm{m}), 2.82$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.6$ and 10.8), $3.10(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.6$ and 1.5), 3.92 (3 $\mathrm{H}, \mathrm{s}, \mathrm{OM}$ e), $4.10(3 \mathrm{H}, \mathrm{s}, \mathrm{OM}$ e), $4.29(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.8$ and 1.5$)$, 4.71-4.77 ($1 \mathrm{H}, \mathrm{m}$), 5.95 and 5.96 (1 H each, $\mathrm{ABq}, \mathrm{J} 1.2$, $\left.0 \mathrm{CH}_{2} \mathrm{O}\right), 6.71(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 6.78(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.13(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 8.34, ArH) and $7.18(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.3, \mathrm{ArH}) ; \delta_{\mathrm{c}} 35.9\left(\mathrm{CH}_{2}\right), 41.1$ $\left(\mathrm{CH}_{2}\right), 42.7\left(\mathrm{CH}_{2}\right), 56.7\left(\mathrm{CH}_{3}\right), 60.2(\mathrm{CH}), 62.5\left(\mathrm{CH}_{3}\right), 101.0$ $\left(\mathrm{CH}_{2}\right), 110.3(2 \times \mathrm{CH}), 116.2(\mathrm{CH}), 117.1(\mathrm{CH}), 124.1,130.9$, $134.8,138.2,146.0,146.3,147.2,152.6$ and $165.0(\mathrm{C}=0)$.

5,8-D ihydro-9,10-dimethoxy-6H-1,3-dioxolo[4,5-h]isoindolo-[1,2-b][3]benzazepin-8-one 20

From compound 19a. Following a procedure similar to that described for the preparation of compound 18, isomer 19a (30 $\mathrm{mg}, 0.065 \mathrm{mmol}$) was oxidised with M CPBA ($14 \mathrm{mg}, 0.065$ mmol) in dichloromethane ($15 \mathrm{~cm}^{3}$) and work-up gave the crude sulfoxide (32 mg). This sulfoxide was dissolved in toluene (5 cm^{3}) and the mixture was heated under reflux for 1 h . The reaction mixture was concentrated under reduced pressure, and the residue was chromatographed on silica gel [hexane-AcOEt (3:1)] to give title compound $20(13 \mathrm{mg}, 57 \%), \mathrm{mp} 209-211^{\circ} \mathrm{C}$ (from hexane-AcOEt) (Found: $\mathrm{M}^{+}, 351.1089 . \mathrm{C}_{20} \mathrm{H}_{17} \mathrm{NO}_{5}$ requires $\mathrm{M}, 351.1107$); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1690 ; \delta_{\mathrm{H}}(300 \mathrm{M} \mathrm{Hz})$ $3.04\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 4.8,5-\mathrm{H}_{2}\right), 3.93(3 \mathrm{H}, \mathrm{s}, \mathrm{OM} \mathrm{e}), 3.8-4.2(2 \mathrm{H}, \mathrm{br}$, $\left.6-\mathrm{H}_{2}\right), 4.11\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OM}\right.$ e), $5.97\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH} \mathrm{H}_{2} \mathrm{O}\right), 6.33(1 \mathrm{H}, \mathrm{s}$, $13-\mathrm{H}), 6.67(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 6.81(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.13(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.4$, $\mathrm{ArH})$ and $7.43(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.4, \mathrm{ArH})$; $\delta_{\mathrm{c}} 35.6\left(\mathrm{CH}_{2}\right), 41.9\left(\mathrm{CH}_{2}\right)$, $56.8\left(\mathrm{CH}_{3}\right), 62.5\left(\mathrm{CH}_{3}\right), 101.3\left(\mathrm{CH}_{2}\right), 105.0(\mathrm{CH}), 110.2(\mathrm{CH})$, 110.3 (CH), 114.4 (CH), 116.4 (CH), 120.4, 127.9, 131.2, 133.3, $134.0,146.6,146.9,147.0,153.0$ and $163.7(C=0)$.

From compound 18. TFA A ($80 \mathrm{mg}, 0.38 \mathrm{mmol}$) was added to a solution of compound 18 ($61 \mathrm{mg}, 0.13 \mathrm{mmol}$) in toluene (10 cm^{3}) at $0^{\circ} \mathrm{C}$, and the mixture was refluxed for 10 h . The reaction mixture was washed successively with saturated aq. NaHCO_{3} and brine, dried $\left(\mathrm{M} \mathrm{GSO}_{4}\right)$, concentrated, and the residue was chromatographed on silica gel [hexane-AcOEt (5:1)] to give compound 20 ($31 \mathrm{mg}, 69 \%$), mp 209-210 ${ }^{\circ} \mathrm{C}$ (from hexane$\mathrm{A} C O \mathrm{Et}$).

Radical cyclisation of compound 12e

Following the general procedure, compound 12e ($474 \mathrm{mg}, 0.87$ $\mathrm{mmol})$ was treated with $\mathrm{Bu}_{3} \mathrm{SnH}(835 \mathrm{mg}, 2.87 \mathrm{mmol})$ and ACN ($64 \mathrm{mg}, 0.26 \mathrm{mmol}$) in toluene ($150 \mathrm{~cm}^{3}$) and the crude material was chromatographed on silica gel [hexane-AcOEt (5:1)] to give 2,3-dihydro-N-[(S)-1-phenylethyl]-3-[(phenylsulfanyl)-methyl]-1H -isoindol-1-one 15 ($185 \mathrm{mg}, 59 \%$) as an oily mixture of two diastereoisomers in the ratio $2: 1$ (determined by an integrated intensity of the peak heights of the signals due to their C-methyl protons appeared at $\delta 1.79$ and 1.65) (Found: M^{+}, 359.1352. $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}$ OS requires M , 359.1344); $v_{\text {max }}\left(\mathrm{CCl}_{4}\right) /$ $\mathrm{cm}^{-1} 1690 ; \delta_{\mathrm{H}}(300 \mathrm{M} \mathrm{Hz})$ (for the major isomer) $1.79(3 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $7.5, \mathrm{CHCH}_{3}$), 3.05 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.5$ and 7.8 , one of $\left.\mathrm{CH}_{2} \mathrm{SPh}\right), 3.55\left(1 \mathrm{H}, \mathrm{dd}\right.$, J 13.5 and 3.0, one of $\mathrm{CH}_{2} \mathrm{SPh}$), 4.45 (1 $\mathrm{H}, \mathrm{dd}, \mathrm{J} 7.8$ and $3.0,3-\mathrm{H}), 5.70\left(1 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.5, \mathrm{CHCH}_{3}\right), 6.99-$ 7.51 ($13 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and 7.86-7.89 ($1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); (for the minor isomer) $1.65\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.2, \mathrm{CHCH}_{3}\right), 2.56(1 \mathrm{H}$, dd, J 13.8 and 8.1, one of $\left.\mathrm{CH}_{2} \mathrm{SPh}\right), 3.16(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.8$ and 2.9 , one of $\mathrm{CH}_{2} \mathrm{SPh}$), 4.74 (1 H , dd, J 8.1, 2.9 and $3-\mathrm{H}$), $5.60(1 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.2$, $\left.\mathrm{CHCH}_{3}\right), 6.99-7.51(13 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.65-7.68(1 \mathrm{H}, \mathrm{m}$, ArH).

R eferences

1 S. Pal, J. K. M ukhopadhyaya and U. R. Ghatak, J. Org. Chem., 1994, 59, 2687.
2 K. Jones, M. Thompson and C. Wright, J. Chem. Soc., Chem. Commun., 1986, 115; J. P. Dittami and H. R amanathan, Tetrahedron Lett., 1988, 29, 45; W. R. Bowman, H. Heaney and B. M. Jordan, Tetrahedron Lett., 1988, 29, 6657; H. Togo and O. K ikuchi, H eterocycles, 1989, 28, 373; K. Jones and J. Wilkinson, J. Chem. Soc., Chem. Commun., 1992, 1767; K. Jones, J. Wilkinson and R. Ewin, Tetrahedron Lett., 1994, 35, 7673 and references cited therein.
3 S. Takano, M. Suzuki, A. K ijima and K. Ogasawara, Tetrahedron Lett., 1990, 31, 2315; S. Takano, M. Suzuki and K. Ogasawara, Heterocycles, 1990, 31, 1151; J. H. Rigby and M. Qabar, J. Am. Chem. Soc., 1991, 113, 8975; S. A. G lover and J. Warkentin, J. Org. C hem., 1993, 58, 2115; J. H. R igby and M . N. Q abar, J. Org. Chem., 1993, 58, 4473; A . G. Schultz, M. A. H oloboski and M . S. Smyth, J. A m. Chem. Soc., 1993, 115, 7904.

4 K. A. Parker, D. M. Spero and K. C. Inman, Tetrahedron Lett., 1986, 27, 2833; A. N. A beywickrema, A. L. J. Beckwith and S. Gerba, J. Org. C hem., 1987, 52, 4072.

5 (a) H. Ishibashi, C. K ameoka, H. Iriyama, K . K odama, T. Sato and M. Ikeda, J. Org. Chem., 1995, 60, 1276; (b) H. I shibashi, C. K ameoka, K . K odama and M. Ikeda, Tetrahedron, 1995, 52, 489.

6 Part of this work has appeared as a preliminary communication: H. Ishibashi, H. K awanami, H. Iriyama and M . Ikeda, Tetrahedron L ett., 1995, 26, 6733.
7 For total syntheses of compound 21, see (a) S. Teitel, W. K lötzer, J. Borgese and A. Brossi, Can. J. Chem., 1972, 50, 2022; (b) E. Valencia, A . J. Freyer, M . Shamma and V. Fajardo, Tetrahedron Lett., 1984, 25, 599; (c) E. N apolitano, G. Spinelli, R . Fiaschi and A. M arsili, J. C hem. Soc., Perkin Trans. 1, 1986, 785; C. J. M oody and G. J. Warrellow, (d) Tetrahedron Lett., 1987, 28, 6089; (e) J. Chem. Soc., Perkin Trans. 1, 1990, 2929; (f) Y. K oseki and T. N agasaka, C hem. P harm. Bull., 1995, 43, 1604; (g) G. Rodríguez, M. M. Cid, C. Saá, L. Castedo and D. Domínguez, J. Org. Chem., 1996, 61, 2780. For other synthetic approaches to isoindolobenzazepine alkaloids: see S. Ruchirawat, W. Lertwanawatana, S. Thianpatangul, J. L. Cashaw and V. E. D avis, Tetrahedron Lett., 1984, 25, 3485; J. Chiefari, W. Janowski and R. Prager, Tetrahedron Lett., 1986, 27, 6119; P. H. M azzocchi, C. R. K ing and H. L. A mmon, Tetrahedron Lett., 1987, 28, 2473; S. Yasuda, Y. Sugimoto, C. M ukai and M. H anaoka, H eterocycles, 1990, 30, 335.
8 For a total synthesis of compound 22, see F. G. Fang and S. J. D anishefsky, Tetrahedron Lett., 1989, 30, 2747.
9 V. Fajardo, V. Elango, B. K. Cassels and M. Shamma, Tetrahedron L ett., 1982, 23, 39.
10 The chloride was readily prepared from 2,3-dimethoxybenzoic acid via bromination with 1,3-dibromo-5,5-dimethylhydantoin in aq. sodium hydroxide (J. Auerbach, S. A . Weissman, T. J. Blacklock, M. R. A ngeles and K. H oogsteen, Tetrahedron Lett., 1993, 34, 931) followed by treatment with thionyl dichloride.
11 H. Ishibashi and M. Ikeda, Rev. Heteroat. C hem., 1996, 14, 59; A. W. M. Lee, W. H. Chan and E. T. T. Chan, J. Chem. Soc., Perkin Trans. 1, 1992, 309; D. Craig, K. D aniels and A. R. M acK enzie, Tetrahedron, 1992, 48, 7803; S. Takano, H. Iida, K . Inomata and K . Ogasawara, H eterocycles, 1993, 35, 47; H. I shibashi, K. Takagaki, N. Imada and M . Ikeda, Tetrahedron, 1994, 50, 10215.

12 H. Ishibashi, Y. Fuke, T. Yamashita and M. Ikeda, Tetrahedron: A symmetry, 1996, 7, 2531.

Paper 6/067231
R eceived 2nd 0 ctober 1996
A ccepted 21st N ovember 1996

[^0]: \dagger Present address: Faculty of Pharmaceutical Sciences, K anazawa

